LightGBM: A Highly Efficient Gradient Boosting Decision Tree
نویسندگان
چکیده
Gradient Boosting Decision Tree (GBDT) is a popular machine learning algorithm, and has quite a few effective implementations such as XGBoost and pGBRT. Although many engineering optimizations have been adopted in these implementations, the efficiency and scalability are still unsatisfactory when the feature dimension is high and data size is large. A major reason is that for each feature, they need to scan all the data instances to estimate the information gain of all possible split points, which is very time consuming. To tackle this problem, we propose two novel techniques: Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). With GOSS, we exclude a significant proportion of data instances with small gradients, and only use the rest to estimate the information gain. We prove that, since the data instances with larger gradients play a more important role in the computation of information gain, GOSS can obtain quite accurate estimation of the information gain with a much smaller data size. With EFB, we bundle mutually exclusive features (i.e., they rarely take nonzero values simultaneously), to reduce the number of features. We prove that finding the optimal bundling of exclusive features is NP-hard, but a greedy algorithm can achieve quite good approximation ratio (and thus can effectively reduce the number of features without hurting the accuracy of split point determination by much). We call our new GBDT implementation with GOSS and EFB LightGBM. Our experiments on multiple public datasets show that, LightGBM speeds up the training process of conventional GBDT by up to over 20 times while achieving almost the same accuracy.
منابع مشابه
Gradient Boosting With Piece-Wise Linear Regression Trees
Gradient boosting using decision trees as base learners, so called Gradient Boosted Decision Trees (GBDT), is a very successful ensemble learning algorithm widely used across a variety of applications. Recently, various GDBT construction algorithms and implementation have been designed and heavily optimized in some very popular open sourced toolkits such as XGBoost and LightGBM. In this paper, ...
متن کاملGPU-acceleration for Large-scale Tree Boosting
In this paper, we present a novel massively parallel algorithm for accelerating the decision tree building procedure on GPUs (Graphics Processing Units), which is a crucial step in Gradient Boosted Decision Tree (GBDT) and random forests training. Previous GPU based tree building algorithms are based on parallel multiscan or radix sort to find the exact tree split, and thus suffer from scalabil...
متن کاملCost efficient gradient boosting
Many applications require learning classifiers or regressors that are both accurate and cheap to evaluate. Prediction cost can be drastically reduced if the learned predictor is constructed such that on the majority of the inputs, it uses cheap features and fast evaluations. The main challenge is to do so with little loss in accuracy. In this work we propose a budget-aware strategy based on dee...
متن کاملConsistent Individualized Feature Attribution for Tree Ensembles
Interpreting predictions from tree ensemble methods such as gradient boosting machines and random forests is important, yet feature attribution for trees is often heuristic and not individualized for each prediction. Here we show that popular feature attribution methods are inconsistent, meaning they can lower a feature’s assigned importance when the true impact of that feature actually increas...
متن کاملAmazon Employee Access Control System
In this work, based on the history data of 20102011 from Amazon Inc., we build up a system which aims to take place of resource administrators at Amazon. Our analysis shows that the given dataset is highly imbalanced with categorical values. Thus in the preprocessing step, we tried different sampling methods, feature selection as well as one hot encoding to make the data more suitable for predi...
متن کامل